
Um Convite à Matemática

com técnicas de demonstração e notas históricas

Daniel Cordeiro de Morais Filho

COLEÇÃO DO PROFESSOR DE MATEMÁTICA

Sumário

Pr	efácio		xi
1	As n 1.1 1.2 1.3	otações matemáticas Para que servem as notações matemáticas?	1 2 4 7
2	1.4 Com 2.1 2.2	*Uma viagem pelas notações do passado	17 23 23 39
3	Mai: 3.1 3.2 3.3	Sum pouco de Lógica Matemática Tabelas-verdade	47 47 49 54
4	Sent 4.1 4.2 4.3 4.4 4.5 4.6	enças condicionais e implicativas.Condições necessárias e suficientes Sentenças condicionais Sentenças implicativas Sentenças condicionais, implicativas e a linguagem de conjuntos *Curiosidade: a verdade das premissas Duas notações que se costumam confundir Condição necessária e condição suficiente	59 63 64 68 69 72
5	Se va 5.1 5.2	Ale a ida, vale a volta? A recíproca de uma sentença A recíproca de uma sentença	77 77 80

	5.3 5.4	Um exemplo de como usar a recíproca de uma sentença **A bicondicional	83 87
6	Desv	rendando os teoremas - Parte I	89
	6.1	O que é um teorema? (Hipótese e tese)	89
7	Desv	vendando os teoremas - Parte II	101
	7.1	Mais tipos de teorema	101
	7.2		104
	7.3		108
8	Desv	vendando as definições matemáticas	115
	8.1		115
_			
9		3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	131
	9.1	3 1	131
	9.2		134
	9.3	Convenções matemáticas	148
10	Con	jecturas e contraexemplos	153
	10.1	Conjecturas e contraexemplos	153
11	Deca	vendando as demonstrações	163
11		O que é uma demonstração? (O raciocínio dedutivo)	
			165
			167
	11.5	Definição de demonstração	107
12			175
	12.1	A redação de uma demonstração	177
	12.2	A redação de uma demonstração	178
			180
13	Técr	nicas de demonstração	181
	13.1	Introdução	181
			182
			185
14	Oua	ndo é necessário saber negar (aprendendo a negar na Matemática)	193
			194
			197
			198
			200
	14,4	inclodo para negai sentenças com mais de um quantineador	200

15	Um pouco mais de Lógica. As demonstrações por casos	207
	15.1 *Tautologias	207
	15.2 Absurdos, contradições	208
	15.3 **Tabelas-resumo das Leis do Cálculo Proposicional	209
	15.4 Demonstração de teoremas com hipóteses e teses especiais	211
16	O absurdo tem seu valor! As demonstrações por redução a um absurdo	217
	16.2 Redução a um absurdo	218
	16.3 Demonstração direta <i>versus</i> demonstração por contradição	225
	16.4 Quando usar a demonstração direta e quando usar a indireta?	226
17	Mais duas técnicas de demonstração	239
	17.1 Não perca a tese de vista. A técnica "de trás para frente"	239
	17.2 Uma outra técnica para demonstrar $H \Rightarrow (T_1 \text{ ou } T_2) \dots \dots \dots$	242
18	Absurdo, resultados de existência, de unicidade	245
	18.1 Demonstrações construtivas. O absurdo e os resultados de existência	245
	18.2 Demonstração por absurdo para demonstrar resultados de unicidade	248
	18.3 Redução ao absurdo e as demonstrações gratuitas	249
19	Demonstrações usando a contrapositiva	251
	19.1 A contrapositiva de uma sentença	251
	19.2 Redução a um absurdo \textit{versus} demonstração usando a contrapositiva	254
20	Demonstrações em um modelo axiomático: um pouco de abstração	259
	20.1 Trabalhando com demonstrações em um modelo axiomático	259
21	Demonstrações com o auxílio de figuras	271
22	Demonstrações por Indução. O método indutivo e o método dedutivo	279
	22.2 Princípio de Indução: o infinito dominado!	280
	22.3 *Raciocínio indutivo, generalizações	290
23	Sofismas, o cuidado com os autoenganos e com os enganadores!	293
	23.1 *Sofismas	293
24	Resumo e tabela-resumo das técnicas de demonstração	303
	24.1 Resumo das técnicas de demonstração	303
	24.2 Tabela-resumo das técnicas de demonstração	305

x Sumário

25	*Textos complementares de leitura	307
	25.1 Conjecturas e problemas em aberto mais socialmente famosos	307
	25.2 Alguns problemas em aberto de fácil entendimento	315
	25.3 Outros problemas em aberto	320
	25.4 Algumas cômicas demonstrações	322
26	Respostas e sugestões para os exercícios	325
Re	ferências Bibliográficas	367
Índ	lice Remissivo	373

Prefácio

A ideia que nos fez escrever este livro foi a de preencher a lacuna de um texto que apresentasse os fundamentos básicos da Lógica Matemática, usando a própria Matemática. Visávamos um livro que pudesse ser usado por professores e alunos do Ensino Básico, particularmente, alunos envolvidos em olimpíadas de Matemática, estudantes dos cursos de Matemática e demais interessados.

É justamente quando precisam ou ingressam na universidade que a maioria de nossos alunos se chocam ao se deparar com o formalismo e a abstração que requerem algumas das primeiras disciplinas de Matemática. O choque decorre, principalmente, de carências na formação dos alunos, de seus professores e de um Ensino Médio que, na maioria das vezes, não lhes fornece um preparo adequado e nem lhes treina para usar o raciocínio lógico dedutivo que posteriormente lhes será cobrado. Juntam-se a esse danoso fato alguns livros didáticos que trazem erros conceituais, a exemplo de não distinguir definições de demonstrações, além de provar fatos matemáticos com exemplos, fazer mal uso de notações, dentre outros disparates.

No âmbito das universidades, ainda temos o fracasso de certas disciplinas introdutórias de Lógica e de Fundamentos da Matemática, que deixam de ensinar como a Matemática realmente funciona, acabam se tornando improdutivas e não conseguem corrigir falhas do raciocínio lógico dos alunos ([42]) nem lhes preparar adequadamente para o Magistério ou para disciplinas mais adiantadas.

É necessário despertar nos professores do Ensino Básico e em nossos jovens alunos o espírito crítico, o raciocínio correto e o cuidado com a linguagem, para que repassem esses conhecimentos às próximas gerações e possamos, com isso, melhorar o ensino nesse aspecto.

xii Prefácio

Nosso objetivo neste livro é que, em curto intervalo de tempo, os leitores possam compreender como a Matemática funciona, como as ideias da Matemática surgem e se desenvolvem; que possam, também, aprender as principais técnicas de demonstração e comecem desde cedo a dar atenção ao mínimo de rigor que a Matemática demanda, aprendendo a se comunicar com uma linguagem clara, precisa e fundamentada na Lógica. Cremos que, quanto mais cedo um estudante puder ter acesso a esses conhecimentos, mais facilmente aprenderá vários outros tópicos que irão aparecer ao longo de sua formação.

Tivemos a intenção de escrever o livro com uma linguagem cativante e leve. Trabalhamos com diversos casos reais de erros e dificuldades em relação ao ensino e à aprendizagem de Matemática, que alunos e professores encontram em livros didáticos e que enfrentam nas salas de aula e em seus cotidianos. Também objetivamos despertar a curiosidade dos leitores para vários tópicos que julgamos interessantes, tanto da Matemática como de sua história.

Para ler o livro, são necessários, basicamente, conhecimentos matemáticos do Ensino Básico, principalmente os da Teoria Elementar dos Números e os da Geometria Plana.

O texto destina-se a ser usado em disciplinas iniciais de Fundamentos de Matemática, de Lógica Matemática (elementar), de Resolução de problemas, em cursos de preparação para Olimpíadas de Matemática, de aperfeiçoamento para professores dos Ensino Fundamental e Médio e em outros cursos de natureza semelhante.

Aos leitores, ressaltamos os seguintes fatos:

- Para explicitar que estamos fazendo uma definição, as palavras que denominam um objeto serão grifadas em fonte negrito.
- As palavras estrangeiras estão escritas em itálico. Visando um melhor entendimento do texto, sentenças matemáticas e algumas palavras também estão em itálico.
- Para dar o mínimo de formalismo e manter nossa proposta, tivemos de explorar noções intuitivas que os leitores certamente possuíam de certos temas e, por vezes, fomos impelidos a fazer uma introdução ingênua de outros. Mas, no momento oportuno, esses temas foram devidamente formalizados e detalhados.

Prefácio xiii

 Algumas referências, mesmo não citadas nos capítulos, são sugestões para consultas posteriores e constam na Referência Bibliográfica.

- Os exercícios se propõem contemplar os mais diversos casos em que possam se apresentar os temas estudados.
- Algumas citações usadas no começo dos capítulos foram tiradas do Mathematical Quotation Server, na página eletrônica

http://math.furman.edu/~mwoodard/mquot.html

(consultada em outubro de 2023) e traduzidas livremente para o Português pelo autor.

A leitura do artigo [55] talvez tenha sido uma de nossas primeiras motivações para escrever este livro. A Revista do Professor de Matemática (RPM) e a coleção [47], ambos editados pela Sociedade Brasileira de Matemática, foram, além de inspiração, razão de vários temas abordados ao longo do texto. Utilizamos a última referência como fonte para criar vários exercícios baseados em fatos reais, com o intuito de desenvolver o senso crítico dos leitores em relação aos livros didáticos e à maneira como esses livros abordam certos tópicos de Matemática.

Agradecemos aos seguintes colegas por sugestões e correções: Ângelo Roncalli, Antônio Brandão, Claudianor Oliveira Alves, Daniel Pellegrino, Francisco Júlio de Araújo Corrêa, Lúcio Guerra, Marcelo Martins dos Santos, José Iraponil Costa Lima, Samuel Duarte, Sinval Braga, Tomás Edson Barros, Vandik Estevam e Alan de Araújo Guimarães. Agradeço ao professor José Lindomberg Possiano Barreiro pela ajuda com o IATEX e pela confecção das figuras. Agradeço ainda, profundamente, a um parecerista anônimo pela leitura técnica e por suas valiosas opiniões para melhorar o texto.

Sugestões para leitura e uso do livro:

- A proposta é que se estude mais rapidamente os capítulos iniciais, objetivando chegar logo ao Capítulo 11, quando começa o estudo das demonstrações matemáticas.
- 2. Os capítulos, seções ou subseções marcados com um asterisco (*) podem ser suprimidas em uma primeira leitura, sem que se altere a proposta principal do livro. Esses tópicos podem ficar para leitura individual complementar

xiv Prefácio

ou para serem apresentados pelos próprios alunos, como algum trabalho da disciplina na qual o livro esteja sendo usado. Essa sugestão não significa que esses tópicos não sejam importantes na formação dos alunos!

3. Os capítulos, seções ou subseções marcados com dois asteriscos (**) abordam tópicos essencialmente de Lógica e podem também, com o devido cuidado, ser omitidos para um uso mais rápido do livro.

Contamos que nos enviem sugestões, nos apontem falhas e erros para que possamos melhorar nosso texto. Usem o endereço: demoraisfilho@gmail.com

Campina Grande, março do ano de 2012

Prefácio da quarta edição

Esta quarta edição foi revisada e atualizada. Também aproveitamos para fazer pequenas modificações.

Mais uma vez, agradecemos a acolhida que o livro tem entre nossos colegas, professores, alunos e interessados.

Fraterno abraço a todos.

Campina Grande, outubro do ano de 2023

Daniel Cordeiro de Morais Filho

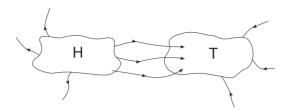


Figura 17.1: Em muitos casos, não se deve perder a tese *T* de vista para conseguir descobrir a demonstração. Se a demonstração for encarada como uma ponte ligando hipótese à tese, nada impede de usar a tese e raciocinar um pouco "de trás para frente" para tentar descobrir como construir essa ponte. Claro, poderá haver algumas tentativas infrutíferas, mas essa ponte deve ser construída. Não se deve desistir!

Vamos a um exemplo. Demonstremos o seguinte teorema

Teorema 17.1.1. Se x e y são números reais positivos, então $\sqrt{xy} \le \frac{x+y}{2}$.

(Hipótese: x e y são números reais positivos

Tese:
$$\sqrt{xy} \le \frac{x+y}{2}$$
)

Nesse teorema temos uma hipótese muito geral, x e y são números reais positivos, e desejamos deduzir uma desigualdade. Como fazer isso partindo apenas dessa hipótese? E agora?

Bem, nesse caso, a tese tem um papel muito importante na descoberta da demonstração. Vejamos.

Primeiramente, é claro que não se pode usar diretamente a tese em uma demonstração, pois é justamente ela que queremos deduzir. Mas sem perder a tese de vista, não poderíamos chegar a alguma expressão conhecida válida, e daí ir em sentido contrário e usar essa expressão para deduzir a tese?

Pois bem, examinando a tese temos:

$$\sqrt{xy} \stackrel{?}{\leq} \frac{x+y}{2} \Rightarrow (\sqrt{xy})^2 \stackrel{?}{\leq} \left(\frac{x+y}{2}\right)^2 \Rightarrow$$

$$\Rightarrow xy \stackrel{?}{\leq} \frac{x^2 + 2xy + y^2}{4} \Rightarrow$$

$$\Rightarrow 4xy \stackrel{?}{\leq} x^2 + 2xy + y^2 \Rightarrow$$

$$\Rightarrow 0 \leq x^2 - 2xy + y^2 \Rightarrow 0 \stackrel{!}{\leq} (x-y)^2.$$

Usamos as interrogações em cima do símbolo de desigualdade, pois não sabemos se elas são válidas. Mas, observe que ao final deduzimos a expressão $(x-y)^2 \geq 0$, que sabemos ser verdadeira, pois o quadrado de qualquer número é não negativo.

Agora, será que os passos anteriores não podem ser revertidos, ou seja, as implicações anteriores valem em sentido contrário? Se valerem, como dessa vez estamos partindo de uma desigualdade válida, provaremos o que queremos.

De fato, as implicações valem em sentido contrário (nesse caso, no sentido direto também). Temos a

Demonstração do Teorema 17.1.1: Sejam x e y números reais. Como $(x-y)^2 \ge 0$, temos as implicações:

$$(x-y)^{2} \ge 0 \Rightarrow x^{2} - 2xy + y^{2} \ge 0 \Rightarrow$$

$$\Rightarrow x^{2} + 2xy + y^{2} \ge 4xy \Rightarrow$$

$$\Rightarrow \frac{x^{2} + 2xy + y^{2}}{4} \ge xy \Rightarrow$$

$$\Rightarrow \left(\frac{x+y}{2}\right)^{2} \ge xy.$$

Como x e y são números positivos, temos $xy = (\sqrt{xy})^2$ e da última desigualdade resulta

$$\left(\frac{x+y}{2}\right)^2 \ge \left(\sqrt{xy}\right)^2 \Rightarrow \frac{x+y}{2} \ge \sqrt{xy}$$
. C.Q.D.

Observações:

 Não se pode usar a tese diretamente em uma demonstração! Não pode haver dúvidas sobre isso!

Note que, informalmente, como em um rascunho, sem perder a tese de vista, apenas encontramos uma desigualdade válida, e voltando nas implicações a partir dessa desigualdade válida é que a tese foi deduzida.

2. Nesse método de demonstração, observe com o devido cuidado se realmente as implicações valem em sentido contrário.

19 Demonstrações usando a contrapositiva

"Euclides me ensinou que sem hipóteses não há qualquer demonstração. Portanto, em qualquer argumento, examine as hipóteses."

Eric Temple Bell (1883-1960)

In Return to Mathematical Circles, H. Eves,
Prindle, Weber & Schmidt, 1988.

19.1 A contrapositiva de uma sentença

Olhando mais atentamente a demonstração do Lema 16.2.1, naquela demonstração provamos a sentença Se n \acute{e} \acute{impar} , então n^2 \acute{e} \acute{impar} e, com argumentos da técnica da demonstração por redução a um absurdo, a usamos para provar o que queríamos: Se n^2 \acute{e} par, então n \acute{e} par.

Portanto, na verdade, escrevendo essas sentenças na forma implicativa, provamos naquela demonstração a seguinte implicação:

$$(n \text{ \'e impar} \Rightarrow n^2 \text{ \'e impar}) \Rightarrow (n^2 \text{ \'e par} \Rightarrow n \text{ \'e par}).$$
 (19.1)

Se chamarmos as proposições

$$H: n^2 \text{ \'e par} \text{ e } T: n \text{ \'e par},$$

as negações dessas sentenças são, respectivamente,

$$^{\sim}H$$
: n^2 é impar e $^{\sim}T$: n é impar.

e, número, 6	suficiente, mas não necessária, 78
Alfabeto grego, 7 Argumentos, 54 não válidos, 55 válidos, 55 Aristóteles, 57, 110, 224 Arquimedes de Siracusa, 76, 96, 97 eureka 97 Axiomas, 133, 168 diferença entre postulados e, 134 que aparecem nos Elementos de Euclides, 133 Bernoulli, Jacques, 280 desigualdade de, 280 Bicondicional, 87 Bombelli, Rafael, 17 Bonaparte, Napoleão, 98	Conectivos, 40 e, 41 não, 194 ou, 41 se, então, 59 Conjecturas, 99, 153, 156 de Beal, 321 de Goldbach, 156 dinheiro para quem resolver, 99 já resolvidas, 307 Conjunto vazio a perfeição do, 159 aplicação à Lógica, 160 definição de, 70 Conjuntos complementar de, 196 interseção de, 39 união de, 39
teorema de, 99	Contraexemplos, 155
C.Q.D., 180	Convenções matemáticas, 148
Cayley, Arthur, 308	Criptografia, 314
Condição	Cálculo
necessária, 72 suficiente, 72	sentencial ou proposicional, 41
necessária, mas não suficiente, 78	da Vinci, Leonardo, 58, 98

De Morgan, Augustus, 308	indiretas, 220
leis da lógica, 195	justificativa lógica das - por redu-
Definições matemáticas, 115, 168	ção a um absurdo, 220
como entender a conjunção <i>se</i> das, 117	quando o método direto ou o indireto, 226
definições <i>versus</i> teoremas, 125	questionário-roteiro para fazer, 178
equivalentes, 126	redação de, 177
evitar círculos viciosos nas –, 118	reductio ad absurdum, 218
o uso do <i>se e somente se</i> nas –, 117	redução a um absurdo, 218
observações sobre, 116	resultados de unicidade, 248
recursivas (ou indutivas), 285	resumo das técnicas de, 303
uma boa –, 126	usando a contrapositiva, 252
Demonstrações matemáticas, 61, 90, 163, 167	•
atitude de alguns professores e au-	usando contraexemplo, 157
tores quanto às, 171	Descartes, René, 21, 153, 309, 319
classificação das, 181	Diofanto de alexandria, 311
com o auxílio de figuras, 271	Divisão de um circunf. em partes iguais,
comentários sobre as, 170	313
comparação entre os métodos por	
absurdo e usando a contrapo-	Einstein, Albert, 153, 314
sitiva, 254	Euclides de Alexandria, 138, 265, 289,
construtivas, 246	317
definição, 168	os <i>Elementos</i> de, 96, 138, 146
direta versus por contradição, 225	Eudoxo de Cnido, 111
diretamente em um modelo axio-	Euler, Leonhard, 6, 20, 154, 162, 309,
mático, 259	317, 319
diretas, 182	conjectura falsa proposta por, 309
estratégias para fazer, 175	Expressões
estão desaparecendo das salas de aula	a, impossíveis, 11
170	indeterminadas, 11
exemplo motivador da definição de,	
165	Falácias, 293
existência de infinitos números pri- mos, 289	Fermat, Pierre de, 21, 309, 310, 319 números de, 309
feitas por um computador, 308	números primos de, 309
	-

o último teorema de, 170, 229, 310, 312 Fibonacci, 298 Fourier, Joseph, 98	Método indutivo, 290 dedutivo, 61, 171 indutivo, 279 Modelo axiomático, 131, 134, 168
Gauss, C.F., 313 Germain, Sophie, 311, 312 Goldbach, Christian, 162 conjectura de, 156, 316 Grafos Teoria dos, 309 Igualdade	consistente, 136 da Geometria Euclidiana, 136 definição de, 136 em outras áreas, 147 inconsistente, 136 nos séculos XIX e XX, 138 Monge, Gaspar, 98
como surgiu o símbolo de, 19	
uso da, 69	Napier, John, 6
Infinito, 6	Newton, Isaac, 13
como representar o, 10	o <i>Principia</i> de, 147
como representar o, ro	Noções
Lagrange, Louis, 98, 255	comuns, 132
Lambert, Johann, 230	primitivas, 132
Lei	Notações, 2
dos cossenos, 96, 106, 250	as mais utilizadas, 4
dos senos, 96	do passado, 17
Linguagem	fatos sobre o uso das, 8
de conjuntos e a Lógica, 30, 64, 256	inventadas por Euler, 20 mais sobre, 6
matemática, 1	os cuidados com o uso das, 4
simbólica, 1	Números
Lógica	amigos, 319
a Linguagem de Conjuntos e a, 30	capicuas, 189
bivalente, 25	critérios de divisibilidade, 189
formal, 41	de Fermat, 320
	de Mersenne, 317, 322
Matemática	demonstração da irracionalidade de
famosos e apaixonados por, 98	$\sqrt{2}$, 221, 272, 273
Mersenne, 319	inteiros, 5, 6, 111, 112
Mersenne, Marin, 317	irracionais, 5, 230

envolvendo funções trigonométri-	como surgiu o símbolo de, 21
cas, 235	curiosidades sobre, 14
envolvendo logaritmo, 234	Pitagóricos, 15, 89, 221, 275, 316
naturais, 5, 10, 160, 169, 170, 184,	ternas, 158
280, 281, 285, 286, 290, 325	Pitágoras de Samos, 89, 91
perfeitos, 316	demonstrações do teorema de, 272,
poligonais, 275	276
primos, 151	generalização do teorema de, 106
de Mersenne, 317	teorema de, 79, 89, 98, 221
fatoriais, 320	Platão, 110, 236
gêmeos, 316	a famosa Academia de, 111
Propriedade Fundamental dos – pri-	Postulados, 133
mos, 97	Premissas, 55, 68
racionais, 185	a verdade das, 68
reais	Princípio
apresentação axiomática dos, 140	da contrapositividade, 252
axioma de ordenação, 268	de Indução Finita, 279, 280
axiomat. da adição de, 140, 260	da Não Contradição, 24
axiomatização da multiplicação de	e, do Terceiro Excluído, 24
141, 261	Problemas matemáticos
multiplicação de, 265	dinheiro para quem resolver, 156,
propriedades de ordem dos, 269	321
raiz quadrada de, 148	em aberto, 315
subtração de, 265	Proposições (vide sentenças), 24
unicidade do elem. neutro da adi-	Propriedade arquimediana dos números
ção, 262	reais, 10
unicidade do elem. neutro da mul-	
tip., 262	Q.E.D., 180
O much large des quetre como 207	Quantificador
O problema das quatro cores, 307	cuidados com o uso, 28
Papiro de Rhind, 230	existencial, 5, 28
Paradoxos	negação de, 196, 198
de Zeno, 10	universal, 5, 28
lógicos, 37	Recorde, Robert, 19
Pascal, Blaise, 309	Regras de inferência, 135, 169
Pi, 230	modus ponens, 135
, 0	

particularização, 135, 262	Simon, Laplace, 98
	Sistema dedutivo, 135
Segmentos comensuráveis, 221	Sofismas, 293
Sentenças, 24	Sócrates, 110, 293
abertas, 26	
como usar a recíproca de, 83	Tabelas-verdade, 47
compostas, 40	da conjunção de sentenças, 48
condicional na Lógica Formal, 50	da disjunção de sentenças, 48
condicional não válida, 60	da negação da disjunção e da con-
condicional válida, 60	junção, 195
conjuntivas, 42	leis do Cálculo Proposicional, 209
conjução de, 41	Tales de Mileto, 137, 184
contradições, 208	Teodoro de Cirene, 236
contrapositiva de, 252	Teorema(s), 89, 92, 168
correto uso da recíproca, 83	Fundamental da Aritmética, 151
disjuntivas, 42	a família dos, 108
disjunção de, 41	corolário, 108
equivalentes, 49, 80	cuja hipótese é uma sentença con-
implicação lógica de, 52	juntiva, 213
importância das — equivalentes, 82	cuja hipótese é uma sentença dis-
método prático para negação de, 200	
negação da condicional, 197	cuja tese é uma sentença disjuntiva
negação da conjunção, 195	214
negação da disjunção, 195	de existência, 111, 187
negação de, 193	de existência e de unicidade, 111
negação dupla de, 198	de unicidade, 110
recíproca de, 77	generalização de, 104
resumo da negação de, 198	hipótese, 90, 168
simples, 40	lema, 108
tabela-verdade da equivalência de,	proposição como sinônimo de, 108
49	recíproco, 102
tautologias, 207	tese, 90
valor lógico de, 25	,
válidas e não válidas, 25	Viète, François, 14
válidas por vacuidade, 160	W.W. 11 (12
Silogismos, 57	Wallis, John, 6, 13
aristotélicos 57	Wiles, Andrew, 311